Sintesis Carbon Dot Dengan Bahan Dasar Asam Sitrat Menggunakan Metode Pemanasan Secara Berulang di Dalam Oven Microwave
Abstrak
Pada penelitian ini telah disintesis carbon dot menggunakan asam sitrat dan polietilen, dengan metode pemanasan secara berulang di dalam microwave. Hasil sintesis dikarakterisasi dengan spektroskopi UV-Vis, FTIR, Fotoluminesensi (PL) dan TRPL. Hasil karakterisasi UV-Vis memperlihatkan bahwa sampel telah menunjukkan dua absorpsi dengan intensitas maksimum pada rentang panjang gelombang antara 200-280 nm dan sekitar 330 nm. Ini menandai transisi eksitasi p®p* dan n®p* yang merupakan karakteristik carbon dot . Karakterisasi FTIR telah menunjukkan adanya pita vibrasi regangan O-H, karbonil aromatik C=O, regangan C-O dan frekuensi vibrasi regangan dari sulfat, masing-masing pada bilangan gelombang 3292, 1623, 1129 dan 996 cm-1. Dari karakterisasi PL dengan menggunakan sinar laser pengeksitasi 320, 420 dan 530 nm (violet, biru dan hijau), sampel carbon dot menghasilkan emisi radiasi masing-masing pada panjang gelombang 453, 525 dan 590 nm. Hasil penghitungan TRPL diperoleh bahwa rata-rata masa hidup fotoluminesensi berada pada orde 10-9 detik, yang merupakan karakteristik dari fotoluminesensi fluoresensi. Hasil-hasil yang diperoleh menunjukkan telah berhasil disintesis carbon dot dengan emisi radiadif yang bergantung pada sinar laser pengeksitasinya.
##plugins.generic.usageStats.downloads##
Referensi
[2] Biswajit Gayen, Soubantika Palchoudhury, and Joydeep Chowdhury, Carbon Dots: A Mystic Star in the World of Nanoscience. Journal of Nanomaterials, vol. 2019, Article ID 3451307, 2019, pp. 1-20. https://doi.org/10.1155/2019/3451307
[3] Ying Zhoum Yao Liu, Yeqing Li, Ziying He, Quan Xu, Yusheng Chen, Jason Street, Hao Guof and Michael Nelles, Multicolor carbon nanodots from food waste and their heavy metal ion detection application, Royal Society of Chemistry Advances, vol. 8, 2018, pp. 23657-23662
[4] Mukesh Lavkush Bhaisare, Abou Talib, M. Shahnawaz Khan, Sunil Pandey, Hui-Fen Wu, Synthesis Of Fluorescent Carbon Dots Via Microwave Carbonization of Citric Acid in Presence of Tetraoctylammonium Ion, and Their Application to Cellular Bioimaging, Microchim Acta, Springer-Verlag Wien, 2015. https://doi.org/10.1007/s00604-015-1541-5
[5] Xiang Miao, Dan Qu, Dongxue Yang, Bing Nie, Yikang Zhao, Hongyou Fan and Zaicheng Sun, Synthesis of Carbon Dots With Multiple Color Emission By Controlled Graphitization and Surface Functionalization, Advanced Materials, vol. 30(1), 2017. 10.1002/adma.201704740
[6] Hui Ding, Ji-Shi Wei, Ning Zhong, Qing-Yu Gao, and Huan-Ming Xiong, Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging, Langmuir, vol. 33, 2017, pp. 12635-12642, https://doi.org/10.1021/acs.langmuir.7b02385
[7] Hui Ding, Yuan Ji, Ji-Shi Wei, Qing-Yu Gao, Zi-Yuan Zhou and Huan-Ming Xiong, Facile Synthesis of Red-Emitting Carbon Dots From Pulp-Free Lemon Juice For Bioimaging, J. Mater. Chem. B, vol. 5, 2017, pp. 5272-5277. https://doi.org/10.1039/c7tb01130j
[8] Konstantinos Dimos, Tuning Carbon Dots Optoelectronic Properties with Polymers, Polymers, 2018, vol. 10, pp. 1-19.
[9] Rohit Ranganathan Gaddam, D. Vasudevan, Ramanuj Narayan, and K. V. S. N. Raju, Controllable Synthesis Of Biosourced Blue-Green Fluorescent Carbon Dots From Camphor For The Detection of Heavy Metal Ions in Water, RSC Adv., vol. 4, 2014, pp. 57137–57143. https://doi.org/10.1039/c4ra10471d
[10] Schneider, J., Reckmeier, C.J., Xiong, Y., Molecular Fluorescence in Citric Acid-Based Carbon Dots, The Journal of Physical Chemistry, 2017, vol. 121, pp. 2014-2022. https://doi.org/10.1021/acs.jpcc.6b12519
[11] Tang, L., Energy-level structure in nitrogen-doped graphene quantum dots, Journal of Material Chemistry C, vol. 1, 2013, pp. 4908-4915. https://doi.org/10.1039/C3TC30877D
[12] Xu, D., Lei, F., 2019, One-Step Hydrothermal Synthesis and Optical Properties of Self-Quenching-Resistant Carbon Dots Towards Fluorescent Ink and as Nanosensors for Fe3+ Detection, RSC Advance, vol. 9, 2019. pp. 8290-8299. https://doi.org/10.1039/c8ra10570g
[13] Himaja A. L., Karthik P.S., Singh S.P., Synthesis of Carbon Dots from Kitchen Waste: Conversionof Waste to Value Added Product, Journal of Fluorescence, vol. 24, 2014, pp. 1767-1773. https://doi.org/10.1007/s10895-014-1465-1
[14] Horiba Scientifict, Time‐Resolved Fluorescence Lifetime Measurements. https://www.horiba.com/fileadmin/uploads/Scientific/Documents/Fluorescence/Tech_Note1_-_Lifetime_measurements.pdf [Cited 2020 June 1].
[15] Lakowicz, J. R., Principles of Fluorescence spectroscopy, Springer, Maryland, 2006, pp. 8-9
[16] Olympus, Basic Concepts in Fluorescence.
https://www.olympuslifescience.com/en/microscoperesource/primer/techniques/fluorescence/fluorescenceintro [Cited 2020 July 10].