ANALISIS RISIKO PORTOFOLIO MENGGUNAKAN METODE SIMULASI MONTE CARLO CONTROL VARIATES

##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.24843/MTK.2021.v10.i04.p342

Abstrak

Value at Risk (VaR) is a method to measure the maximum loss with a certain level of confidence in a certain period. Monte Carlo simulation is the most popular method of calculating VaR. The purpose of this study is to demonstrate control variates method as a variance reduction method that can be applied to estimate VaR. Moreover, it is to compare the results with the normal VaR method or analytical VaR calculation. Control variates method was used to find new returns from all stocks which are used as estimators of the control variates. The new returns were then used to define parameters needed to generate N random numbers. Furthermore, the generated numbers were used to find the VaR value. The method was then applied to estimate a portfolio of the game and esports company stocks that are EA, TTWO, AESE, TCEHY, and ATVI . The results show Monte Carlo simulation gives VaR of US$41.6428 within 1000 simulation, while the analytical VaR calculation  or  normal VaR method gives US$30.0949.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##

Program Studi Matematika, FMIPA, Universitas Udayana

##submission.authorWithAffiliation##

Program Studi Matematika, FMIPA, Universitas Udayana

##submission.authorWithAffiliation##

Program Studi Matematika, FMIPA, Universitas Udayana

Diterbitkan
2021-11-30
##submission.howToCite##
PANGARIBUAN, IRENE MAYLINDA; DHARMAWAN, KOMANG; SUMARJAYA, I WAYAN. ANALISIS RISIKO PORTOFOLIO MENGGUNAKAN METODE SIMULASI MONTE CARLO CONTROL VARIATES. E-Jurnal Matematika, [S.l.], v. 10, n. 4, p. 192-197, nov. 2021. ISSN 2303-1751. Tersedia pada: <http://103.29.196.112/index.php/mtk/article/view/80276>. Tanggal Akses: 17 dec. 2025 doi: https://doi.org/10.24843/MTK.2021.v10.i04.p342.
Bagian
Articles

##plugins.generic.recommendByAuthor.heading##

1 2 3 4 5 > >>